COMBINATORICA

Bolyai Society – Springer-Verlag

ON THE RELATION BETWEEN TWO MINOR-MONOTONE GRAPH PARAMETERS

R. PENDAVINGH

Received June 13, 1997

We prove that for each graph $\mu(G) \leq \lambda(G) + 2$, where μ and λ are minor-monotone graph invariants introduced by Colin de Verdière [3] and van der Holst, Laurent, and Schrijver [5]. It is also shown that a graph G exists with $\mu(G) < \lambda(G)$. The graphs G with maximal planar complement and $\mu(G) = |V(G)| - 4$, characterised by Kotlov, Lovász, and Vempala, are shown to be forbidden minors for $\{H \mid \mu(H) < |V(G)| - 4\}$.

1. Introduction

Given a graph G = (V, E) without loops or multiple edges, define \mathcal{O}_G as the collection of real-valued symmetric $V \times V$ matrices $M = (m_{ij})$ satisfying

- 1. if $ij \in E$, then $m_{ij} < 0$, and
- 2. if $ij \notin E$ and $i \neq j$, then $m_{ij} = 0$.

There is no restriction on the diagonal entries. The elements of \mathcal{O}_G are sometimes called discrete Schrödinger operators.

A matrix $M \in \mathcal{O}_G$ satisfies the *Strong Arnold Hypothesis*, SAH for short, if there is no nonzero symmetric matrix $X = (x_{ij})$ such that MX = 0, and such that $x_{ij} = 0$ whenever i = j or $ij \in E$.

By $\lambda_i(M)$ we denote the *i*-th smallest eigenvalue of M. When G is connected and $M \in \mathcal{O}_G$, the Perron-Frobenius Theorem implies that for any eigenvector z of M:

z>0 or $z<0 \iff z$ belongs to the smallest eigenvalue of M.

Hence, the multiplicity of $\lambda_1(M)$ is 1. The parameter $\mu(G)$ is defined as the largest corank of any matrix $M \in \mathcal{O}_G$ with exactly one negative eigenvalue, satisfying the SAH.

This definition is due to Colin de Verdière [3]. Equivalently, $\mu(G)$ is the maximum multiplicity of $\lambda_2(M)$, where M ranges over all $M \in \mathcal{O}_G$ satisfying (a more general formulation of) the SAH. See [7] for a survey of results concerning μ .

Mathematics Subject Classification (1991): 05C

If G = (V, E) is a graph and $S \subseteq V$, let G[S] denote the subgraph of G induced by S. Given $x \in \mathbb{R}^V$, the support of x is $\operatorname{supp}(x) := \{v \in V \mid x_v \neq 0\}$. Furthermore, $\operatorname{supp}_+(x) := \{v \in V \mid x_v > 0\}$ is the postive support, and $\operatorname{supp}_-(x) := \{v \in V \mid x_v < 0\}$ is the negative support of a vector x.

A linear subspace $L \subseteq \mathbb{R}^V$ is said to be a valid representation of G when for each nonzero $x \in L$, one has

- 1. $\operatorname{supp}_{+}(x) \neq \emptyset$, and
- 2. $G[\operatorname{supp}_{+}(x)]$ is connected.

Van der Holst, Laurent, and Schrijver [5] defined $\lambda(G)$ as

$$\lambda(G) := \max\{\dim(L) \mid L \text{ is a valid representation of } G\}.$$

When G=(V,E) is a graph and $S\subseteq V$, we denote the set of neighbors of S in G by $N_G(S)$, i.e. $N_G(S):=\{v\in V\setminus S\mid \exists w\in S, vw\in E\}$. When $M\in \mathcal{O}_G,\ M_S$ denotes the restriction of M to the rows and columns indexed by S. Given a vector $x\in \mathbb{R}^V,\ x_S\in \mathbb{R}^S$ denotes the restriction of x to the positions with indices in S. By extension with zeros a vector $x\in R^S$ may still be regarded as an element of R^V , and as such vectors restricted to different subsets of V may be added.

A graph H is a *subgraph* of a graph G, denoted $H \subseteq G$, if H can be obtained by removing vertices and deleting edges from G. When H can be obtained from a subgraph of G by contracting edges, H is a *minor* of G, which we denote by $H \subseteq G$.

Both λ and μ are minor-monotone, i.e.

if H is a minor of G then $\lambda(H) \leq \lambda(G)$ and $\mu(H) \leq \mu(G)$.

The short proof of the minor-monotony of λ appears in [5]. The SAH plays an essential role in proving that μ is minor-monotone. Colin de Verdière's original proof can be found in [3].

A graph G = (V, E) is a *clique sum* of $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ if $V = V_1 \cup V_2, E = E_1 \cup E_2$ and $V_1 \cap V_2$ induces a clique in both G_1 and G_2 . If G is a clique sum of G_1 and G_2 , then $\lambda(G) \geq \lambda(G_i)$ and $\mu(G) \geq \mu(G_i)$ as G_1 and G_2 are both subgraphs of G. By work of Van der Holst, Laurent, and Schrijver [5], we know that

$$\lambda(G) = \max\{\lambda(G_1), \lambda(G_2)\}.$$

Van der Holst, Lovász, and Schrijver [7] showed that either

- 1. $\mu(G) \le \max\{\mu(G_1), \mu(G_2)\}\$, or
- 2. $\mu(G) = \max\{\mu(G_1), \mu(G_2)\} + 1$, and $\mu(G_1) = \mu(G_2)$.

It follows inductively that if G is a clique sum of more than two graphs G_1, \ldots, G_k , then $\mu(G) \leq \max\{\mu(G_1), \ldots, \mu(G_k)\} + 1$.

A $Y\Delta$ -operation on G is removing a vertex v of degree 3 from G, and then adding a triangle on the former neighbors of v. The converse is called a ΔY -operation. Bacher and Colin de Verdière show [1]: if H is obtained from G by a $Y\Delta$ -operation, then $\mu(H) \leq \mu(G)$. Also, if G is obtained from H by a ΔY -operation, G is a subgraph of a clique sum of H and K_4 . Hence, if $\mu(H) \geq 4 > \mu(K_4)$, we have $\mu(G) = \mu(H)$.

Given any set of graphs $\mathcal C$ closed under taking minors, define the forbidden minors for $\mathcal C$ as

$$F(\mathcal{C}) := \{ G \mid G \notin \mathcal{C}, \forall H < G \mid H \in \mathcal{C} \}.$$

Such a set of forbidden minors is finite, by the Robertson-Seymour graph minor Theorem. Clearly, membership of \mathcal{C} can be characterized by

$$H \in \mathcal{C} \Leftrightarrow H$$
 has no element of $F(\mathcal{C})$ as a minor.

Since μ is minor-monotone, the set $\{G | \mu(G) < k\}$ is closed under taking minors, for any k. The following forbidden minor characterizations of $\mu < k$ are known:

- 1. $\mu(G) < 1 \iff G$ has no $\overline{K_2}$ -minor,
- 2. $\mu(G) < 2 \iff G$ has no K_3 or $K_{1,3}$ -minor,
- 3. $\mu(G) < 3 \iff G$ has no K_4 or $K_{2,3}$ -minor,
- 4. $\mu(G) < 4 \iff G$ has no K_5 or $K_{3,3}$ -minor,
- 5. $\mu(G) < 5 \iff G$ has no minor in the Petersen family.

In each of these statements, the ' \Longrightarrow ' part is relatively easy to verify: it suffices to compute μ for the graphs mentioned on the right. All but the last of these results are due to Colin de Verdière [3]. For the characterisation of $\mu < 4$ he used Kuratowski's Theorem, that a graph without K_5 - or $K_{3,3}$ -minor is planar.

The characterisation of $\mu < 5$ is due to Lovász and Schrijver [9]. They show that so-called 'flat' graphs have $\mu < 5$. By a Theorem of Robertson, Seymour, and Thomas [10], a graph without a minor in the Petersen family is a flat graph. The Petersen family is the set of 7 graphs that can be obtained from K_6 by any series of ΔY - and $Y\Delta$ -operations. The Petersen graph is in the Petersen family.

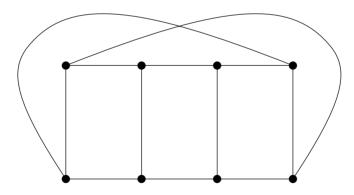


Figure 1. The graph V_8

The corresponding results on λ are [5]:

- 1. $\lambda(G) < 1 \iff G$ has no $\overline{K_2}$ -minor,
- 2. $\lambda(G) < 2 \iff G \text{ has no } K_3\text{-minor},$
- 3. $\lambda(G) < 3 \iff G$ has no K_4 -minor,

4. $\lambda(G) < 4 \iff G$ has no K_5 - or V_8 -minor.

The graph V_8 is shown in Figure 1.

It was speculated in [9] that the following might be true:

a graph G satisfies $\lambda(G) \le t$ if and only if G is a subgraph of a clique sum of graphs H with $\mu(H) \le t$.

The 'only if' part implies that for any graph G, we have $\mu(G) \leq \lambda(G) + 1$. The 'if' part implies that $\mu(G) \geq \lambda(G)$ for all graphs G.

In the next section it is shown that for any graph G, we have $\mu(G) \leq \lambda(G) + 2$. In section 4, we find a graph G with $\mu(G) < \lambda(G)$.

2. A relation between μ and λ

The starting point of the present investigation is the following lemma. Its proof appears in [7].

Lemma 1. (van der Holst) Let G be a connected graph and let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue. Let $x \in \ker M$ be such that $G[\operatorname{supp}_+(x)]$ is disconnected. Then there is no edge between $\operatorname{supp}_+(x)$ and $\operatorname{supp}_-(x)$, and for each component C of $G[\operatorname{supp}(x)]$, $N_G(C) = N_G(\operatorname{supp}(x))$.

Given a graph G = (V, E), call a vector $x \in \mathbb{R}^V$ broken when $G[\operatorname{supp}(x)]$ has at least 3 components. Observe that for any connected graph G, if $M \in \mathcal{O}_G$ has exactly one negative eigenvalue, and x is a nonzero vector in $\ker(M)$, then

- 1. $\operatorname{supp}_+(x) \neq \emptyset$, and
- 2. if x is not broken, then $G[\operatorname{supp}_{+}(x)]$ is connected.

(1. holds as x is orthogonal to an eigenvector z>0 of M corresponding to $\lambda_1(M)$, and 2. is a consequence of Lemma 1.)

So each subspace of $\ker(M)$ avoiding broken vectors is a valid representation of G.

When $M \in \mathcal{O}_G$ has exactly one negative eigenvalue with corresponding eigenvector z, then Rayleigh's Theorem implies

$$x \perp z$$
 and $x^T M x = 0 \iff x \in \ker(M)$.

Using this fact van der Holst, Lovász, and Schrijver [6, 7] show:

Lemma 2. Let G be a connected graph and $M \in \mathcal{O}_G$ with exactly one negative eigenvalue. Let $S \subseteq V(G)$, and C_1, \ldots, C_k , the components of G - S. Then $\lambda_1(M_{C_i}) < 0$ implies $\lambda_1(M_{C_i}) > 0$ for all $j \neq i$.

With the techniques that were used to prove Lemma 1 and Lemma 2, it is possible to show the following:

Lemma 3. Let G be a connected graph and let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue. Let $x \in \ker(M)$, and set

$$D := \{ y \in \ker(M) \mid \operatorname{supp}(y) \subseteq \operatorname{supp}(x) \}.$$

If $G[\operatorname{supp}(x)]$ is disconnected, it has exactly $\dim(D) + 1$ connected components. If in addition M satisfies the SAH, then $\dim(D) \leq 2$.

Proof. Let $G[\operatorname{supp}(x)]$ be disconnected, and let C_1, \ldots, C_k be its connected components. Mx=0 implies $M_{C_i}x_{C_i}=0$, and hence $\lambda_1(M_{C_i})\leq 0$ for each $i=1,\ldots,k$.

By Lemma 2, $\lambda_1(M_{C_i}) < 0$ would imply $\lambda_1(M_{C_j}) > 0$ for all $j \neq i$, and thus we have $\lambda_1(M_{C_i}) = 0$ for each i = 1, ..., k. By the Perron-Frobenius Theorem applied to each M_{C_i} we have either $x_{C_i} < 0$ or $x_{C_i} > 0$. Hence if $y \in D$ then there exists $\alpha_i \in \mathbb{R}$ such that $y_{C_i} = \alpha_i x_{C_i}$, since $M_{C_i} y_{C_i} = 0$. Let z be an eigenvector corresponding to the smallest eigenvalue of M. If $y \in \ker(M)$ then $z^T y = 0$, hence D is contained in

$$D' := \{ y \in \mathbb{R}^V \mid y = \sum \alpha_i x_{C_i}, \alpha_i \in \mathbb{R}, z^T y = 0 \}.$$

On the other hand, suppose $y \in D'$. Then, since $y^T M y = \sum \alpha_i^2 x_{C_i}^T M_{C_i} x_{C_i} = 0$ and $z^T y = 0$ we have $y \in \ker(M)$ by Rayleigh's Theorem, and certainly $\sup(y) \subseteq \sup(x)$, so D = D'. Since $z^T y = 0 \Leftrightarrow \sum \alpha_i (z_{C_i}^T x_{C_i}) = 0$, and $z_{C_i}^T x_{C_i} \neq 0$ for all i, it follows that $\dim(D) = \dim(D') = k - 1$.

Now assume M satisfies the SAH, and suppose for a contradiction that $G[\operatorname{supp}(x)]$ has more than 3 components. Clearly there exist $s,t\in D$ such that $\operatorname{supp}(s)=C_1\cup C_2$ and $\operatorname{supp}(t)=C_3\cup C_4$. But then $X=ts^T+st^T$ is a symmetric matrix such that MX=0 and

$$x_{ij} \neq 0 \Rightarrow (i \in C_1 \cup C_2, j \in C_3 \cup C_4 \text{ or vice versa}) \Rightarrow ij \notin E(G),$$
 contradicting the SAH.

Theorem 1. For all connected graphs G, $\mu(G) \leq \lambda(G) + 2$.

Proof. Let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue and satisfy the SAH, with $\operatorname{corank}(M) = \mu(G)$. By Lemma 3, all broken vectors in $\ker(M)$ are contained in finitely many 2-dimensional subspaces of $\ker(M)$. Then there exists a subspace $L \subseteq \ker(M)$ of dimension $\operatorname{corank}(M) - 2$ that has no nonzero vector in common with any of these subspaces. But then L is a valid representation of G, and $\lambda(G) \ge \dim(L) = \mu(G) - 2$.

The question remains whether this bound is sharp. We do not know any graph G having $\mu(G)=\lambda(G)+2$, so it may be true that $\mu(G)\leq \lambda(G)+1$ for all G. Indeed, the latter bound holds for graphs with $\mu(G)\leq 5$, as one verifies knowing the forbidden minor characterizations of $\{G\mid \mu(G)< k\}$ for $k=1,\ldots 5$. Also, $\mu(K_{k,l})\leq \min\{k,l\}+1=\lambda(K_{k,l})+1$ [7]. It is certainly not true that $\mu(G)\leq \lambda(G)$ for all G. For example, $\mu(K_{1,3})=2=\lambda(K_{1,3})+1$ and $\mu(P)=5=\lambda(P)+1$ for the Petersen graph P.

3. 3-regular graphs and graphs on a surface

For 3-regular and claw-free graphs, we obtain somewhat better bounds than the $\mu \leq \lambda + 2$ of Theorem 1.

Lemma 4. Let G be a connected graph and let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue. Suppose there is an edge $e = uv \in E(G)$ such that

$$e \cap \operatorname{supp}(x) \neq \emptyset$$
 for all broken $x \in \ker(M)$.

Then $\operatorname{corank}(M) \leq \lambda(G-e) + 1$.

Proof. We show that the space $L := \{y \in \ker(M) \mid y_u + y_v = 0\}$ is a valid representation of G-e. On the contrary, suppose that some $y \in L$ is broken. Since for each component C_i of $G[\operatorname{supp}(y)]$ either $y_{C_i} > 0$ or $y_{C_i} < 0$, and by assumption $e \cap \operatorname{supp}(y) \neq \emptyset$, e has an endpoint in two different components of $G[\operatorname{supp}(y)]$, a contradiction with Lemma 1. So y is not broken and hence $G[\operatorname{supp}_+(y)]$ is connected. Because $y_u + y_v = 0$, e does not have both endpoints in $\operatorname{supp}_+(y)$. So even $(G-e)[\operatorname{supp}_+(y)]$ is connected. Hence, L is a valid representation of G-e, and $\lambda(G-e) \geq \dim(L) \geq \operatorname{corank}(M) - 1$.

Lemma 5. Let G be a connected, 3-regular graph and let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue. If $x \in \ker(M)$ is a broken vector, $G - \operatorname{supp}(x)$ has no edges.

Proof. By Lemma 1 we have $N_G(C) = N_G(\operatorname{supp}(x))$ for each component C of $G[\operatorname{supp}(x)]$. Since G is 3-regular, a vertex $v \not\in \operatorname{supp}(x)$ has either $N_G(v) \subseteq \operatorname{supp}(x)$ or $N_G(v) \cap \operatorname{supp}(x) = \emptyset$. By the connectedness of G, if $V \setminus \operatorname{supp}(x) \setminus N_G(\operatorname{supp}(x))$ is nonempty it is connected to $N_G(\operatorname{supp}(x))$, but then there exists a vertex $v \in N_G(\operatorname{supp}(x))$ that is connected to $V \setminus \operatorname{supp}(x) \setminus N_G(\operatorname{supp}(x))$, a contradiction. Hence $V \setminus \operatorname{supp}(x) = N_G(\operatorname{supp}(x))$ and $N_G(v) \subseteq \operatorname{supp}(x)$ for all $v \not\in \operatorname{supp}(x)$.

Theorem 2. For any connected 3-regular graph G, $\mu(G) \leq \lambda(G) + 1$.

Proof. Let $M \in \mathcal{O}_G$ have exactly one eigenvalue and $\operatorname{corank}(M) = \mu(G)$. Let $e \in E(G)$ be any edge. By Lemma 5, $e \cap \operatorname{supp}(x) \neq \emptyset$ for all broken $x \in \ker(M)$. By Lemma 4, $\mu(G) = \operatorname{corank}(M) \leq \lambda(G - e) + 1 \leq \lambda(G) + 1$.

For example, the Petersen graph P has $\mu(P) = 5$ and $\lambda(P) = 4$, and when an arbitrary edge is removed from P the result is a subdivision of V_8 (see figure 1). The above proof yields a construction of a 4-dimensional valid representation of V_8 , given a matrix $M \in \mathcal{O}_P$ with exactly one eigenvalue and $\operatorname{corank}(M) = 5$. It is not necessary that the SAH holds for such a matrix M.

Theorem 3. If G is a connected claw-free graph, then $\mu(G) \leq \lambda(G)$.

Proof. Suppose $M \in \mathcal{O}_G$ with exactly one eigenvalue and $\operatorname{corank}(M) = \mu(G)$. Suppose $x \in \ker(M)$ is broken. As G is connected, there exists $v \in N_G(\operatorname{supp}(x))$. Then, by Lemma 1, v has neighbors in each of at least 3 components of $\operatorname{supp}(x)$.

This is a contradiction with the assumption that G is claw-free. Hence $\ker(M)$ is a valid representation of G of dimension $\mu(G)$.

Theorem 4. Given any surface S,

$$\max\{\mu(H) \mid H \text{ embeds in } S\} \leq \max\{\lambda(H) \mid H \text{ embeds in } S\}.$$

Proof. Let G attain the maximum in $\max\{\mu(H) \mid H \text{ embeds in } S\}$. We will construct a clawfree graph G' that has G as a minor and is embedded in S. By minor-monotony and Theorem 3 we then have $\mu(G) \leq \mu(G') \leq \lambda(G')$, and the Theorem will follow.

We may assume that all vertices of G have degree at least 3. To obtain G' from G, first split vertices such that embeddability in S is preserved, until each vertex has degree 3. Next, replace each edge by a path of length 2. Finally, add edges connecting each pair of neighbors of a vertex of degree 3. The resulting graph G' has G as a minor by construction, is claw-free and is embedded in S.

4. An upper bound on μ , and a counterexample

Theorem 5. If G = (V, E) is any connected graph, then either

$$|E| \ge \mu(G)(\mu(G) + 1)/2$$
 or $G = K_{3,3}$.

Proof. Suppose there exists some $G \neq K_{3,3}$ with $|E| < \mu(G)(\mu(G) + 1)/2$. Then $\mu(G) > 4$, and we may assume that G is triangle-free, as applying ΔY operations does not violate the condition that $|E| < \mu(G)(\mu(G) + 1)/2$.

Let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue and satisfy the SAH, with $\operatorname{corank}(M) = \mu(G)$.

Suppose that some diagonal entry of M is nonzero, say $m_{11} \neq 0$. Let $F \subseteq E$ be the edges of a spanning tree of G. The linear space of matrices

$$\mathcal{X} := \{X \mid X \text{ symmetric and } MX = 0\}$$

has dimension $\dim(\mathcal{X}) = \mu(G)(\mu(G)+1)/2$. Consider the subspace

$$\mathcal{X}' := \{ X \in \mathcal{X} \mid \forall ij \in E \setminus F \ x_{ij} = 0, \forall i \neq 1 \ x_{ii} = 0 \}.$$

Let $X \in \mathcal{X}'$, and set $F' := \{ij \in E \mid x_{ij} \neq 0\}$. As $F' \subseteq F$, the graph G' = (V, F') is a forest. If $F' \neq \emptyset$, then there exists some vertex $i \neq 1$ of degree 1 in G'. This contradicts the fact that $x_{ii} = 0$ and $m_i^T x_i = 0$. Hence, $x_{ij} = 0$ for all $ij \in E$. Similarly, $m_1^T x_1 = 0$ and $m_{11} \neq 0$ imply $x_{11} = 0$. So also $x_{ii} = 0$ for all $i \in V$.

Since the SAH holds for M we have X=0. It follows that \mathcal{X}' contains no nonzero elements. From this, and the definition of \mathcal{X}' it follows that

$$0 = \dim(\mathcal{X}') \ge \dim(\mathcal{X}) - |E \setminus F| - (|V| - 1)$$
$$= \mu(G)(\mu(G) + 1)/2 - |E| > 0,$$

a contradiction. So $m_{ii} = 0$ for all $i \in V$.

Let z>0 be an eigenvector belonging to the smallest eigenvalue of M. If $ij \notin E$, then the vector u defined by $u_i=z_j$, $u_j=-z_i$ and $u_k=0$ when $k\neq i,j$ has $z^Tu=0$ and $u^TMu=0$. Hence, $u\in \ker(M)$ by Rayleigh's Theorem. By Lemma 1 applied to u, it follows that N(i)=N(j). Hence, G is complete multipartite. If C is a coclique of G, then we similarly find an $x\in \ker(M)$ with $\operatorname{supp}(x)=C$. Hence $|C|\leq 3$ by Lemma 3. Since G is also triangle-free, G is an induced subgraph of $K_{3,3}$, contradicting the fact that $\mu(G)>4$.

For any k, the complete graph K_{k+1} is a forbidden minor for $\{H \mid \mu(H) < k\}$. Also, if k > 4 then each graph obtained from K_{k+1} by any series of ΔY - and $Y\Delta$ -operations is a forbidden minor, and all these graphs have the same number of edges as K_{k+1} . In general, not every forbidden minor is obtained this way, but we do have:

Corollary 5.1. If G is a forbidden minor for $\{H | \mu(H) < k\}$, then G has at least as many edges as the complete graph K_{k+1} , or $G = K_{3,3}$.

Kotlov, Lovász, and Vempala [8] characterise the graphs G whose complement \overline{G} is a maximal planar graph and for which $\mu(G) \ge |V(G)| - 4$.

Corollary 5.2. If \overline{G} is a maximal planar graph and $\mu(G) = |V(G)| - 4$, then G is a forbidden minor for $\{H \mid \mu(H) < |V(G)| - 4\}$.

Proof. If \overline{G} is a maximal planar graph, then $|E(\overline{G})| = 3|V(G)| - 6$. Hence, |E(G)| = (|V(G)| - 4)(|V(G)| - 3)/2. Any proper minor H of G has strictly fewer edges than G, and hence by Theorem 5 we have $\mu(H) < |V(G)| - 4$.

For example, we have $\mu(\overline{I}) = |V(\overline{I})| - 4 = 8$ where I denotes the Icosahedron. So \overline{I} is a forbidden minor for $\{H | \mu(H) < 8\}$, as is K_9 . One cannot obtain \overline{I} from K_9 by a series of ΔY - and $Y\Delta$ -operations (shown by computer).

A generalised dodecagon of order (1,2) or GD(1,2) is a graph G with the following properties:

- 1. G is 3-regular,
- 2. G has diameter 6,
- 3. for each vertex $v \in V$ and each i = 1, ..., 5: if $u \in V$ is at distance i from v, then u has 2 neighbors at distance i+1 from v and 1 neighbor at distance i-1 from v, and

4. for each vertex $v \in V$: if $u \in V$ has distance 6 from v, then it has 3 neighbors at distance 5 from v.

In other words, a GD(1,2) is a distance-regular graph with intersection array $\{3,2,2,2,2,2;1,1,1,1,1,3\}$. A GD(1,2) has 126 vertices, and 189 edges. There exists a unique generalised dodecagon of order (1,2) [2], known as Tutte's 12-Cage. We will denote this graph by T.

Theorem 6. $\mu(T) \le 18 < 20 \le \lambda(T)$.

Proof. By Theorem 5, $\mu(T) \leq 18$ as |E(T)| = 189 and $T \neq K_{3,3}$. The second-largest eigenvalue θ of the adjacency matrix A of T has multiplicity 21 [2, p. 416]. Hence $M := \theta I - A \in \mathcal{O}_T$ has exactly one negative eigenvalue, and $\operatorname{corank}(M) = 21$. As T is 3-regular, $\lambda(T) \geq 20$ by the proof of Theorem 2.

5. Lower bounds for λ

The following theorem is due to Kotlov, Lovász, and Vempala [8]:

Theorem 7. For every graph G,

- 1. if \overline{G} is a disjoint union of paths, then $\mu(G) \ge |V(G)| 3$,
- 2. if \overline{G} is outerplanar, then $\mu(G) \ge |V(G)| 4$,
- 3. if \overline{G} is planar, then $\mu(G) \ge |V(G)| 5$.

These bounds on μ can be extended to λ as follows:

Theorem 8. For every graph G,

- 1. if \overline{G} is a disjoint union of paths, then $\lambda(G) \ge |V(G)| 3$,
- 2. if \overline{G} is outerplanar, then $\lambda(G) \ge |V(G)| 4$,
- 3. if \overline{G} is planar and $K_{2,2,2} \not\subseteq \overline{G}$, then $\lambda(G) \ge |V(G)| 5$.
- **Proof.** 1. When \overline{G} is a disjoint union of paths, $\mu(G) \geq |V(G)| 3$. Also, G is claw-free as \overline{G} has no triangles. By Theorem 3, $\mu(G) \leq \lambda(G)$.
- 2. Observe that if \overline{H} is a subgraph of \overline{G} , then $|V(H)| \lambda(H) \leq |V(G)| \lambda(G)$. We may therefore assume that \overline{G} is maximally outerplanar. So \overline{G} is 2-connected, contains no $K_{2,3}$ or K_4 -minor, and has $\mu(G) \geq |V(G)| 4$.
- Let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue and $\operatorname{corank}(M) = \mu(G)$. Suppose $x \in \ker(M)$ is broken. Let C_1, C_2, C_3 be components of $G[\operatorname{supp}(x)]$, indexed such that $|C_1| \ge |C_2| \ge |C_3|$.

Since $K_{|C_1|,|C_2|,|C_3|}$ is a subgraph of $\overline{G}[\text{supp}(x)]$, and $K_{2,3}$ is not a subgraph of \overline{G} , either $(|C_1|,|C_2|,|C_3|) = (1,1,1)$ or $(|C_1|,|C_2|,|C_3|) = (2,1,1)$. Similarly,

 $V \setminus \operatorname{supp}(x) = N_G(\operatorname{supp}(x))$ as K_4 is not a subgraph of \overline{G} . Hence, if C_i is a singleton this implies that C_i is not connected to $V \setminus \operatorname{supp}(x)$ in \overline{G} . As a maximally outerplanar graph is 2-connected, $(|C_1|, |C_2|, |C_3|) = (1, 1, 1)$ entails $\operatorname{supp}(x) = V$, and we are done. When $(|C_1|, |C_2|, |C_3|) = (2, 1, 1)$, $v \notin \operatorname{supp}(x)$ must be connected to C_1 by 2 vertex-disjoint paths in \overline{G} . This implies $\overline{G} \geq K_{2,3}$, a contradiction. So $\operatorname{supp}(x) = V$ and we are done.

Since $\ker(M)$ contains no broken vectors, it is a valid representation of G.

3. We may assume that \overline{G} is maximally planar, no vertex has degree 4 in \overline{G} , and $K_{2,2,2} \not\subseteq \overline{G}$, by the following argument. If a graph is not maximally planar and does not contain a $K_{2,2,2}$ -subgraph, it is always possible to add an edge, keeping planar and not introducing a $K_{2,2,2}$ -subgraph. Furthermore, when each triangular face of a maximally planar graph is subdivided by a vertex, the resulting graph contains no vertex of degree 4. Since \overline{G} is maximally planar, \overline{G} is 3-connected and contains no $K_{3,3}$ - or K_5 -minor.

Let $M \in \mathcal{O}_G$ have exactly one negative eigenvalue and corank $(M) = \mu(G)$, and let M satisfy the SAH. Suppose $x \in \ker(M)$ is broken. Let C_1, C_2, C_3 be the components of G[supp(x)], indexed such that $|C_1| \ge |C_2| \ge |C_3|$.

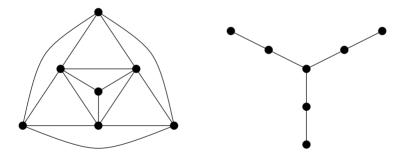


Figure 2. \overline{G} (left) is max. planar, and G (right) is a tree.

Since $K_{3,3} \not\subseteq \overline{G}[\operatorname{supp}(x)]$ we have that if $|C_1| \ge 3$ then $|C_1| = |C_2| = 1$. Hence there are the following cases:

Case 1. $(|C_1|, |C_2|, |C_3|) = (1, 1, 1)$: $v \in N_G(\text{supp}(x))$ and 3-connectivity imply $|V \setminus \text{supp}(x) \setminus N_G(\text{supp}(x))| \ge 3$, as v must be 3-connected in \overline{G} to the vertex in C_3 . Hence $K_{3,3} \subseteq \overline{G} - N_G(\text{supp}(x))$, a contradiction. So $V = C_1 \cup C_2 \cup C_3$, done.

Case 2. $(|C_1|,|C_2|,|C_3|)=(2,1,1)$: $v\in N_G(\operatorname{supp}(x))$ and 3-connectivity imply $|V\setminus\operatorname{supp}(x)\setminus N_G(\operatorname{supp}(x))|\geq 1$. As $K_5\not\subseteq\overline{G}-N_G(\operatorname{supp}(x))$, we know $|V\setminus\operatorname{supp}(x)\setminus N_G(\operatorname{supp}(x))|=1$. So $\overline{G}-N_G(\operatorname{supp}(x))=K_{2,1,1,1}$. Since \overline{G} is maximally planar, $N_G(\operatorname{supp}(x))=\emptyset$. So $\overline{G}=K_{2,1,1,1}$ and hence $\lambda(G)\geq |V(G)|-5$.

Case 3. $(|C_1|, |C_2|, |C_3|) = (k, 1, 1), k > 2$: Now, $V \setminus \text{supp}(x) \setminus N_G(\text{supp}(x)) = \emptyset$ since otherwise $K_{3.3} \subseteq \overline{G} - N_G(\text{supp}(x))$. Also, $N_G(\text{supp}(x)) = \emptyset$, since $v \in N_G(\text{supp}(x))$

would be 3-connected to C_1 , which implies $\overline{G} \ge K_{3,3}$. So $V = C_1 \cup C_2 \cup C_3$, and as \overline{G} is maximally planar, $\overline{G}[C_1]$ is a cycle. Hence, any $v \in C_1$ has degree 4 in \overline{G} , a contradiction.

Case 4. $(|C_1|, |C_2|, |C_3|) = (2, 2, 1)$: then $V \setminus \text{supp}(x) \setminus N_G(\text{supp}(x)) = \emptyset$. Hence, the unique vertex $v \in C_3$ has degree 4 in \overline{G} , contradiction.

Case 5. $(|C_1|, |C_2|, |C_3|) = (2, 2, 2)$: then $K_{2,2,2} \subseteq \overline{G}$, contradicting our assumption.

Since $\ker(M)$ contains no broken vectors, it is a valid representation of G.

The graph G as shown in figure 2 has a planar complement, but $K_{2,2,2} \subseteq \overline{G}$ and $\lambda(G) = 1 \not\geq 2 = |V(G)| - 5$.

References

- [1] R. Bacher, Y. Colin de Verdière: Multiplicités des valeurs propres et transformations étoile-triangle des graphes, *Bulletin de la Société Mathématique de France*, **123** (1995), 101–117.
- [2] A. E. BROUWER, A. M. COHEN, A. NEUMAIER: Distance-Regular Graphs, Springer Verlag, Ergebnisse der Mathematik und ihrer Grensgebiete 3. Folge, Band 18, 1989.
- [3] Y. Colin de Verdière: On a new graph invariant and a criterion for planarity in: Graph Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary mathematics, American Mathematical Society, Providence, Rhode Island, 1993, 137–147.
- [4] H. VAN DER HOLST: Topological and Spectral Graph Characterisations, Ph.D. Thesis, University of Amsterdam (1996).
- [5] H. VAN DER HOLST, M. LAURENT, and A. SCHRIJVER: On a minor-monotone graph invariant, J. Combin. Theory Ser. B, 65 (1995), 291–304.
- [6] H. VAN DER HOLST, L. LOVÁSZ, A. SCHRIJVER: On the invariance of Colin de Verdière's graph parameter under clique sums, *Linear Algebra and its Applica*tions, 226 (1995), 509–517.
- [7] H. VAN DER HOLST, L. LOVÁSZ, A. SCHRIJVER: The Colin de Verdière graph parameter, to appear in the proceedings of the 16th British Combinatorial Conference.
- [8] A. KOTLOV, L. LOVÁSZ, S. VEMPALA: The Colin de Verdière number and sphere representations of a graph, preprint, 1996.
- [9] L. Lovász and A. Schrijver: The Colin de Verdière number of linklessly embeddable graphs, *Proceedings of the American Mathematical Society*, to appear.

[10] N. ROBERYTSON, P. SEYMOUR, and R. THOMAS: Sachs' Linkless Embedding Conjecture, Combin. Theory Ser. B, 64 (1995), 185–227.

R. Pendavingh

Faculteit der Wiskunde, Informatica, Natuurkunde en Sterrenkunde Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam